руccкий
english
РЕГИСТРАЦИЯ
ВХОД
Баку:
02 июнь
09:59
Журналы
Женька и Ждун
© Portu
Все записи | Разное
вторник, апрель 10, 2007

Электромагнитное оружие

aвтор: rubiny ®
 
Технологии генерации электромагнитных импульсов высокой мощности и микроволновая технология высокой мощности достигли уровня, когда Е-бомбы (электромагнитные бомбы) становятся технически возможными, давая новые возможности как в стратегических, так и в тактических конфликтах. Разработка Е-бомб как бомб обычного (неядерного) типа разрешает их использование в неядерных столкновениях. В этой работе обсуждаются аспекты технологической базы, технологии доставки оружия и предлагается доктрина использования таких устройств в бомбах и боеголовках.

Эффективное проведение военных действий против современного индустриально или постиндустриально развитого противника потребует применения специализированных инструментов, разработанных для уничтожения информационных систем. Электромагнитные бомбы, созданные специально для этого и доставляемые соответствующими средствами, являются очень эффективным инструментом для этой цели.

Действие электромагнитного импульса (ЭМИ) впервые наблюдалось при высотных ядерных испытаниях. Действие характеризуется генерацией очень короткого (сотни наносекунд), но интенсивного электромагнитного импульса, который распространяется от источника с уменьшающейся интенсивностью, в соответствие с теорией электромагнетизма. Этот импульс энергии производит мощное электромагнитное поле, особенно вблизи места взрыва. Поле может быть достаточно сильным, чтобы вызвать кратковременные перенапряжения в тысячи вольт в электрических проводниках, таких как провода или проводящие дорожки печатных схем.

В этом аспекте действие ЭМИ имеет военное значение, так как может привести к необратимому повреждению широкого спектра электрического и электронного оборудования, особенно компьютеров и радио или радарных приемников. В зависимости от электромагнитной стойкости электроники, степени упругости оборудования к воздействию ЭМИ и интенсивности поля, производимого оружием, оборудование может быть необратимо повреждено или, иными словами, электрически уничтожено. Причиненное повреждение мало чем отличается от того, что можно ожидать от близкого удара молнии и может потребовать полной замены оборудования, или, по крайней мере, существенной его части.

Коммерческое компьютерное оборудование особенно уязвимо к действию ЭМИ, так как оно в основном построено на МОП-приборах высокой плотности, которые очень чувствительны к воздействию высоковольтных переходных процессов. Для МОП-приборов является существенным, что требуется очень немного энергии для того, чтобы повредить или уничтожить их, любое напряжение порядка десятков вольт может вызвать эффект, называемый пробоем затвора, который эффективно уничтожает прибор. Даже если импульс не имеет энергии, достаточной для термического повреждения, источник питания оборудования сам добавит энергии, чтобы завершить процесс уничтожения. Поврежденные приборы могут еще функционировать, но их надежность будет серьезно ухудшена. Экранирование электроники при помощи корпусов оборудования обеспечивает только ограниченную защиту, так как любые кабели, входящие и выходящие из оборудования, будут вести себя подобно антеннам, направляя высокое напряжение в оборудование.

Компьютеры, используемые в системах обработки данных, коммуникационных системах, системах отображения информации, системах промышленного контроля, включая системы сигнализации автомобильных и железных дорог, и компьютеры, встроенные в военное оборудование, такое, как сигнальные процессоры, системы контроля полетов, цифровые системы контроля двигателей - все они потенциально уязвимы к воздействию ЭМИ.

Другие электронные приборы и электрическое оборудование могут также быть уничтожены ЭМИ. Телекоммуникационное оборудование может быть весьма уязвимым вследствие наличия длинных кабелей между приборами. Приемники всех типов особенно чувствительны к ЭМИ, так как высокочувствительные высокочастотные транзисторы и диоды в таком оборудовании легко уничтожаются при воздействии электрических импульсов высокого напряжения. Поэтому радарное и электронное военное оборудование, спутниковое, микроволновое, УКВ, КВ и низкочастотное коммуникационное оборудование и телевизионное оборудование является потенциально уязвимым к воздействию ЭМИ.

Существенно, что современные платформы военного назначения плотно набиты электронным оборудованием, и несмотря на то, что эти платформы хорошо защищены, ЭМИ-устройства могут существенно уменьшить их функциональность или перевести их в разряд непригодных к использованию.

Технологическая база, которая может быть применена к разработке электромагнитных бомб, является как разнообразной, так и вполне зрелой во многих областях. Ключевыми технологиями, существующими в этой области, являются: генераторы со сжатием потока при помощи взрывчатки (explosively pumped Flux Compression Generators, FCG), работающие на взрывчатке или пороховом заряде магнито-гидродинамические генераторы (explosive or propellant driven Magneto-Hydrodynamic (MHD) generators) и целый набор микроволновых устройств высокой мощности (HPM devices), из которых наиболее продвинутым является осциллятор с виртуальным катодом (Virtual Cathode Oscillator, Vircator). Широкий набор экспериментальных образцов был испытан в этих технологических областях и имеется значительное количество публикаций в открытой литературе.
В этой работе дан обзор базовых принципов и атрибутов этих технологий, применительно к бомбам и боеголовкам. Следует подчеркнуть, что обзор не является исчерпывающим.

Генераторы со сжатием потока при помощи взрывчатки (FC-генераторы) являются наиболее зрелой технологией, применительно к разработке бомб. FC-генераторы были впервые продемонстрированы Кларенсом Фоулером в Лос Аламосе (Clarence Fowler at Los Alamos National Laboratories, LANL) в конце 50-х годов. С тех пор был создан и испытан широкий набор конструкций FC-генераторов, как в США, так и в СССР, а позднее - в СНГ.

FC-генератор - это устройство в относительно компактной упаковке, способное произвести электрическую энергию порядка десятков МДж за сотни микросекунд. С пиковой мощностью от единиц до десятков ТВт, FC-генераторы могут быть использованы прямо, или в качестве источника коротких импульсов для микроволновых генераторов. Для сравнения, ток, производимый большими FC-генераторами в 10-1000 раз больше, чем ток, производимым типичным ударом молнии.

Центральная идея конструкции FC-генератора заключается в использовании "быстрой" взрывчатки для того, чтобы быстро сжать магнитное поле, преобразовав энергию взрывчатки в магнитное поле.

Начальное магнитное поле в FC-генераторах до инициирования взрывчатки производится стартовым током. Стартовый ток обеспечивается внешними источниками, такими как высоковольтный конденсатор, малые FC-генераторы или MHD устройства. В принципе, подойдет любое оборудование, способное произвести импульс электрического тока от десятков кА до единиц МА.

Как правило, используются коаксиальные FC-генераторы. Коаксиальное расположение представляет особый интерес в контексте данной статьи, так как цилиндрический форм-фактор облегчает "упаковку" FC-генераторов в бомбы и боеголовки.
В типичном коаксиальном FC-генераторе, цилиндрическая медная труба образует якорь. Эта труба заполнена "быстрой" высокоэнергетической взрывчаткой. Якорь окружен спиралью, как правило медной, который образует статор FC-генератора. Обмотка статора в некоторых конструкциях расщеплена на сегменты, с разветвлением проводов на границах сегментов, для того, чтобы оптимизировать электромагнитную индуктивность спирали якоря.


Интенсивные магнитные силы, производимые во время работы FC-генератора, потенциально могут вызвать преждевременное разрушение генератора, если не предпринять контрмеры. Обычно они заключаются в дополнении конструкции оболочкой из немагнитного материала. Могут быть использованы бетон или стекловолокно в эпоксидной матрице. В принципе, может быть использован любой материал, с соответствующими механическими и электрическими качествами. Там, где существенен вес конструкции, например, в боеголовках крылатых ракет, стекло- или кевларовые эпоксидные композиты наиболее реальные кандидаты.

Как правило, взрывчатка инициируется, когда стартовый ток достигает пикового значения. Инициация обычно выполнятся при помощи генератора, который производит во взрывчатке волну детонации с однородным плоским фронтом. После инициирования, фронт распространяется через взрывчатое вещество в якоре, деформируя его в конус (12-14 градусов дуги). Там, где якорь расширяется до полного заполнения статора, происходит короткое замыкание между концами статорной обмотки. Распространяющееся короткое замыкание имеет эффект сжатия магнитного поля. Результат заключается в том, что такой генератор производит импульс нарастающего тока, пиковое значение которого достигается перед окончательным разрушением прибора. По опубликованным данным, время нарастания составляет от десятков до сотен микросекунд, завися от параметров устройства, при токах в пике в десятки МА и энергиях в пике в десятки МДж.

Достигаемое усиление тока (т.е. отношение выходного тока к стартовому) меняется в зависимости от типа конструкции, но значения, достигающие 60, уже демонстрировались. В военных приложениях, где вес и объем существенны, желательны наиболее малогабаритные источники стартового тока. В этих приложениях могут применяться каскадные FC-генераторы, где малый FC-генератор используется как источник стартового тока для более крупного FC-генератора. Основные технические проблемы применения FC-генераторов в военных целях: источник стартового тока и как "упаковать" FC-генератор в соответствующую бомбу или боеголовку. Последняя проблема упрощается коаксиальной геометрией коаксиальной или конической конструкции FC-генераторов. Существенно, что эта геометрия подходит для военных применений, где FC-генераторы могут устанавливаться аксиально с приборами типа микроволновых виркаторов (Vircators).

Конструкция МГД генераторов на пороховых зарядах и взрывчатых веществах значительно менее зрелая, чем конструкция FC-генераторов. По-видимому, МГД приборы будут играть минимальную роль в ближайшее время. В контексте данной статьи, их потенциальная роль лежит в таких областях, как генерация стартового тока для FC- генераторов.

Фундаментальные принципы, лежащие в конструкции МГД приборов заключаются в том, что проводник, двигающийся через магнитное поле, будет производить электрический ток перпендикулярно направлению поля и движению проводника. В МГД генераторе на взрывчатке или пороховом заряде, проводником является плазма - ионизированный газ от ВВ или порохового заряда - которая двигается поперек магнитного поля. Ток собирается электродами, которые находятся в контакте с плазменной струей.

Хотя FC-генераторы являются потенциальной технологической базой для генерации мощных электрических импульсов, их выход, вследствие физики процесса, ограничен полосой частот ниже 1 МГц. При таких частотах многие цели будет трудно атаковать даже с очень высокими уровнями энергии, более того, фокусировка энергии от таких устройств будет проблематичной. Микроволновой источник высокой мощности решает обе проблемы, так как его выходная мощность может быть хорошо сфокусирована, кроме того, микроволновое излучение намного лучше поглощается многими типами целей.

Существует широкий набор микроволновых устройств высокой мощности. Релятивистские клистроны, магнетроны, Slow Wave-устройства, рефлекс-триоды, Spark Gap-устройства и осцилляторы с виртуальным катодом - виркаторы (Vircators) - это все примеры имеющейся технологической базы. С точки зрения перспективы разработки бомб или боеголовок на настоящее время преимущество имеют осцилляторы с виртуальным катодом , а в ближайшей перспективе - Spark Gap-источники. Виркаторы представляют интерес вследствие того, что это одноразовые приборы, способные произвести очень мощный одиночный импульс энергии, конструктивно простые, небольшие по размерам, прочные и способные работать в относительно широкой полосе частот микроволнового диапазона.

Физика работы виркаторов существенно более сложная, чем физика работы ранее рассмотренных устройств. Фундаментальная идея, лежащая в основе виркатора заключается в ускорении мощного потока электронов сетчатым анодом. Значительное число электронов пройдет анод, формируя облако пространственного заряда за анодом. При определенных условиях, эта область пространственного заряда будет осциллировать с частотами микроволнового диапазона. Если область пространственного заряда помещена в резонансную полость, которая соответствующем образом настроена, может быть достигнута очень большая пиковая мощность. Чтобы вывести энергию из резонансной полости могут быть использованы обычные микроволновые технологии. Поскольку частота осцилляции зависит от параметров электронного пучка, виркаторы могут быть настроены по частоте, где микроволновая полость поддерживает соответствующие моды. Уровни мощности, достигнутые в экспериментах с виркаторами, находятся в диапазоне от 170 кВт до 40 ГВт по мощности и в диапазоне длин волн от дециметрового до сантиметрового.


Как правило, описываются две конфигурации виркаторов: аксиальный виркатор (Axial Vircator, AV), и поперечный виркатор (Transverse Vircator, TV). Аксиальный виркатор наиболее прост по конструкции и, как правило, в экспериментах дает наибольшую выходную мощность. Обычно он встраивается в цилиндрическую волноводную структуру. Мощность, как правило, выводится посредством перехода волновода в коническую рупорную структуру, которая служит антенной. Аксиальные виркаторы обычно генерируют в поперечной магнитной моде. Поперечный виркатор инжектирует катодный ток от стороны полости и обычно генерирует в поперечной электрической моде.

Технические вопросы, возникающие при конструировании виркаторов, связаны с длительностью выходного импульса, который обычно порядка микросекунды и лимитируется размером ячеек анодной сетки, стабильностью частоты генерации, эффективностью преобразования и общей выходной мощностью. Эффективный отбор мощности из виркаторной полости в режимах, которые подходят для выбранного типа антенны, может также быть проблемой при высоких уровнях энергии и потенциально могут вызвать пробой изоляторов.

Проблема поражающего действия электромагнитного оружия является комплексной. В отличие от технологической базы для конструирования оружия, которая широко представлена в литературе, вопросы, связанные с поражающим действием, рассматриваются в литературе с гораздо меньшей частотой.

В то время, как расчет напряженности электромагнитного поля при заданном радиусе для конкретной конструкции является прямой задачей, определение вероятности поражения для данного класса целей при заданных условиях таковой не является.

Во-первых, типы целей весьма разнообразны по своей электромагнитной прочности или способности противостоять повреждению. Оборудование, которое было специально заэкранировано и "усилено" с целью противостоять электромагнитной атаке, будет противостоять электромагнитным полям с интенсивностью на порядок большей, чем стандартное оборудование коммерческого класса. Более того, стойкость к электромагнитным атакам даже однотипного оборудования, но разных производителей, может быть разной из-за особенностей электрической конструкции, кабельных схем и экранирования.

Вторая основная группа проблем в определении поражающего действия заключается в эффективности поглощения энергии, которая является мерой того, какая доля энергии переходит из поля, произведенного электромагнитным оружием, в цель. Только энергия, поглощенная целью, может вызвать поражение.

Два пути проникновения энергии в приборы:

энергия проникает в цель через "парадную дверь": через антенну, наличие которой характерно для радарного и связного оборудования. Антенная подсистема разрабатывается для передачи энергии в оборудование и из него и, таким образом, является эффективным путем для потока энергии от электромагнитного оружия ко входу прибора;
энергия проникает через "заднюю дверь": электромагнитное поле от электромагнитного оружия генерирует большие переходные токи (выбросы, если генерируются низкочастотным оружием или электрические стоячие волны, если генерируются микроволновым оружием) на электрических проводниках или кабелях внутренних соединений или обеспечивающих соединения с основным источником питания или телефонной сетью. Оборудование, подсоединенное к облученным кабелям или проводам будет подвержено действию или высоковольтных выбросов или стоячих волн, которые могут повредить источники питания и коммуникационные интерфейсы, если их электрическая стойкость не усилена. Более того, если переходной процесс проникнет в оборудование, повреждение может быть сделано и внутри прибора.
Низкочастотное оружие будет хорошо воздействовать на типичную проводную инфраструктуру, такую как большинство телефонных линий, сетевые кабели и силовые линии вдоль улиц, стояков зданий и коридоров. В большинстве случаев любая конкретная кабельная проводка будет включать многократные линейные сегменты, объединяемые при примерно прямых углах. Какой бы ни была относительная ориентация оружейного поля, более чем один линейный сегмент кабельной проводки окажется ориентированным таким образом, что будет достигаться хорошая эффективность поглощения энергии.


Коммуникационные интерфейсы и источники питания должны, как правило, удовлетворять требованиям электробезопасности, накладываемыми соответствующими регулирующими документами. Такие интерфейсы обычно защищаются посредством изолирующих трансформаторов с номинальным напряжением от сотен вольт до 2-3 кВ.

Очевидно, что если при защите, обеспечиваемой трансформатором, выходят из строя кабельный разрядник или экранировка, напряжения, даже такие низкие, как 50 В могут вызвать существенные повреждения компьютерного или связного оборудования. Микроволновое оружие высокой мощности, работающее в сантиметровом и миллиметровом диапазонах, имеет дополнительный - к проникновению через "заднюю дверь" - механизм проникновения энергии в оборудование. Это возможность прямо проникать в оборудование через вентиляционные отверстия, щели между панелями и плохо экранированными интерфейсами. При этих условиях, любое отверстие, ведущее внутрь оборудования, ведет себя как щель в микроволновой полости, позволяя микроволновой радиации прямо возбуждать или проникать в полость. Микроволновая радиация будет формировать пространственную стоячую волну внутри оборудования. Компоненты, расположенные в противоположных узлах стоячей волны будут подвергаться действию сильного электромагнитного поля.

Поскольку радиация микроволнового диапазона легче проникает в оборудование, чем радиация низкочастотного диапазона, и во многих случаях обходит защиту, разработанную для того, чтобы остановить проникновение низкочастотной энергии, микроволновое оружие потенциально имеет большее поражающее действие, чем низкочастотное оружие.

Разнообразие типов вероятных целей и неизвестные геометрическое расположение и электрические характеристики проводной и кабельной инфраструктуры, окружающей цель, делает точное предсказание поражающего действия невозможным.

Обычный подход, когда имеют дело с проникновением энергии через провода и кабели, заключается в том, чтобы определить "вольтаж" уровня поражения и затем использовать его для нахождения напряженности поля, требуемой для образования этого напряжения. Когда напряженность поля известна, радиус поражения для данного типа оружия может быть рассчитан.

Тривиальный пример: микроволновый генератор высокой мощности (10 ГВт, 5 ГГц) облучает площадку диаметром 400-500 м. Это даст напряженность поля в несколько киловольт на метр, что, в свою очередь, вызовет напряжения от сотен вольт до киловольт на облученных проводах и кабелях. Это означает, что радиус поражения будет порядка сотен метров, в зависимости от параметров оружия и электрической прочности мишени.

Первый шаг в максимизации поражающего действия бомбы, заключается в максимизации пиковой мощности и длительности излучения. При заданном размере бомбы, это достигается путем использования наиболее мощного генератора (генератора со сжатием потока или виркатора в случае микроволновых генераторов) и путем максимизации эффективности преобразования внутренней энергии порохового заряда или взрывчатки в электромагнитную энергию. Энергия, которая не эмитируется, потеряна с точки зрения поражающего действия.

Второй шаг заключается в максимизации эффективности поглощения энергии мишенью. Хорошая стратегия, когда имеешь дело со сложным и разнообразным набором мишеней, заключается в том, чтобы максимально использовать частотный диапазон электромагнитного оружия.

Низкочастотная бомба, созданная на базе FC-генератора, требует большой антенны, чтобы обеспечить эффективную доставку энергии от оружия к цели; компактная антенна не будет оптимальным решением. Одна из возможных схем заключается в развертывании пяти линейных антенных элементов при достижении бомбой заданной высоты. Это достигается путем выбрасывания кабельной катушки с несколькими сотнями метров кабеля. Четыре радиальных антенных элемента формируют виртуальную землю около бомбы, в то время как аксиальный элемент используется для того, чтобы передать энергию от FCG. Длины элементов необходимо с особой тщательностью согласовать с частотными характеристиками оружия. Импульсный трансформатор высокой мощности применяется, чтобы согласовать низкий импеданс FC-генератора с очень высоким импедансом антенны и гарантировать, что импульс тока не испарит кабель раньше времени.

Возможны другие подходы. Один из них заключается в том, чтобы направить бомбу как можно ближе (порядка нескольких метров) к цели, и положиться на ближнее поле, производимое обмоткой FC-генератора, которая действует как петлевая антенна с диаметром, много меньшем длины волны. Область, которая заслуживает дальнейших исследований в этом контексте - это использование низкочастотных бомб для повреждения или уничтожения библиотек на магнитных лентах, так как ближние поля в непосредственной близости от генератора потока того же порядка величины, что и коэрцитивная сила большинства современных магнитных материалов.

Микроволновые бомбы имеют широкий диапазон режимов "внедрения" энергии. Излучение их имеет длину волны, малую по сравнению с размерами бомб, и может быть легко сфокусировано на мишени при помощи компактного антенного ансамбля. Предполагая, что антенна обеспечивает требуемый размер оружейного "следа", имеется по крайней мере два механизма, которые могут быть применены к дальнейшей максимизации поражающего действия.

Первый заключается в качании частоты. Это может улучшить "внедрение" энергии по сравнению с "моночастотным" оружием, так как дает возможность радиации внедриться в апертуры и резонансы в широком интервале частот.

Второй механизм, который может быть применен для улучшения "внедрения" - поляризация оружейного излучения. Если мы предположим, что ориентация возможных апертур и резонансов проникновения в наборах мишеней случайна относительно ориентации оружейной антенны, линейно поляризованная эмиссия использует только половину имеющихся возможностей. Круговая поляризация использует все возможности "внедрения" энергии.

Практическое ограничение заключается в том, что имеется определенная трудность в разработке и изготовлении мощной антенны с круговой поляризацией, которая, к тому же, должна быть компактной и широкополосной. Поэтому требуется провести определенные исследования по коническим спиральным типам антенн, способным работать с высокими уровнями; необходимо также создать соответствующий интерфейс для виркатора с несколькими выходными портами. Другой аспект поражающего действия электромагнитной бомбы - высота детонации; варьируя высоту детонации можно достигнуть компромисса между размером области поражения и интенсивностью электромагнитного поля в этой области. Т.е можно принести в жертву площадь поражения, чтобы пробить электромагнитную стойкость при заданном размере бомбы Это мало чем отличается от использования воздушных взрывных устройств.

Суммируя вышесказанное, можно сказать, поражающее действие максимизируется путем максимизации выходной мощности и эффективности переноса энергии от оружия к мишени. Микроволновое оружие дает возможность сфокусировать почти всю выходную энергию в область летального поражения, и дает возможность применить широкий спектр мод внедрения энергии. Поэтому микроволновые бомбы предпочтительнее.

Известны решения по установке электромагнитных боеголовок в крылатые ракеты. Выбор крылатых ракет в качестве носителей будет ограничивать вес электромагнитного оружия 340 кг (750 фунтов), но если пожертвовать некоторым количеством горючего, это значение может быть увеличено. Ограничение во всех таких применениях заключается в необходимости нести батарею для обеспечения стартового тока первичного FC-генератора. Поэтому полезная нагрузка разделяется между батареей и собственно оружием.

В полностью автономном вооружении, таком как крылатые ракеты, размер первичного источника тока и его батареи может накладывать существенные ограничения на возможности оружия. Авиабомбы, которые имеют подлетное время от десятков секунд до минут, могут быть сконструированы так, чтобы использовать энергосистему самолета. В такой конструкции бомбы банк конденсаторов может быть заряжен по пути от взлета самолета до цели. После сброса бомбы может потребоваться уже значительно меньший бортовой источник электропитания для сохранения заряда в первичном источнике до его инициации.

Электромагнитные бомбы, доставляемые при помощи обычных самолетов дают много лучшее соотношение массы электромагнитного прибора к общей массе бомбы, так как большая часть бомбовой массы может быть отдана инсталлируемому электромагнитному устройству. Из этого следует, что на данном технологическом этапе электромагнитная бомба той же массы, что и крылатая ракета, будет иметь более высокую поражающую способность в предположении одинаковой точности доставки и технологической одинаковости конструкции электромагнитных приборов.

Электромагнитная боеголовка ракеты будет включать собственно электромагнитное устройство, конвертер электрической энергии и бортовой источник питания, такой, как батарея. Электромагнитное устройство будет инициировано по команде бортовой системы подрыва. В крылатых ракетах это может быть связано с навигационной системой; а в противокорабельных ракетах и ракетах воздух-воздух с радарным искателем. Отношение массы боеголовки к общей массе ракеты будет между 15% и 30%.

Боеголовка электромагнитной бомбы состоит из электромагнитного прибора, конвертера электрической энергии и аккумулятора энергии для накачки и поддержания заряда электромагнитного прибора после отделения его от платформы-носителя. Подрыв может быть обеспечен радарным высотомерным взрывателем для взрыва бомб в воздухе, барометрическим взрывателем или навигационной системой в GPS-управляемых бомбах. Соотношение полезная нагрузка/общая масса может доходить до 85%, так как большая часть общей массы занята электромагнитным прибором и поддерживающим его оборудованием.

Вследствие потенциально большого радиуса поражения электромагнитного устройства , сравнимого с радиусом поражения обычным прибором такой же массы, благоразумным было бы выпускать носитель ЭМУ с безопасного расстояния. В то время как для крылатых ракет это является само собой разумеющимся, потенциальное применение электромагнитных устройств в самолетах-снарядах, антикорабельных ракетах и ракетах класса воздух-воздух будет диктовать такую тактику стрельбы или бомбометания, чтобы самолет, выпустивший ракету или бомбу, мог удалится на безопасное расстояние, прежде чем произойдет детонация боеголовки.


Появление устройств наведения с использованием спутниковой GPS навигации для обычных самолетов-снарядов обеспечило оптимальные средства для доставки такого оружия. Хотя GPS-управляемое оружие без дифференциального GPS-расширения может и не иметь точности, которую обеспечивают лазерные и телевизионные средства наведения, оно все же достаточно точно (~40 футов) и, что важно, дешево и всепогодно.

Самолеты-снаряды, как средства доставки HPM-боеголовок, важны по трем причинам. Во-первых, самолеты-снаряды могут выпускаться вне эффективного радиуса противовоздушной обороны, минимизируя, таким образом, риск для выпускающего снаряд самолета. Во-вторых, большой "зазор" означает, что самолет может остаться не подверженным действию бомбы. Наконец, автопилот бомбы-снаряда может быть запрограммирован на конечную траекторию оружия, так что цель может быть поражена с наиболее подходящих направлений и высоты.

Основное преимущество использования электромагнитных бомб заключается в том, что они могут быть доставлены при помощи тактических самолетов с навигационной системой наведения, способными нести GPS-управляемое вооружение. Как можно ожидать, GPS-управляемое вооружение будет стандартным вооружением западных военно-воздушных сил к концу этого десятилетия и каждый самолет, способный нести стандартное управляемое вооружение также становится потенциальным носителем электромагнитных бомб.


Из-за простоты электромагнитных бомб по сравнению с таким вооружением, как ракеты для подавления источников излучения, можно ожидать, что Е-бомбы должны быть как дешевле в производстве, так и проще в обслуживании, позволяя, таким образом, иметь более существенные запасы. В свою очередь, это делает массированные атаки значительно более осуществимыми.

В этом контексте стоит отметить, что наличие в составе военно-воздушных сил США таких самолетов как F-117A и B-2A обеспечивает возможность "безнаказанной"доставки E-бомб против произвольных целей. Способность В-2А доставить до 16 GAM/JDAM боеголовок, снаряженных е-бомбами, позволяет малому числу таких самолетов произвести решающий удар против ключевых целей театра военных действий. Модификации F-22 с их ударной и электронной боевой мощью также являются весьма подходящими платформами для доставки E-бомб/JDAM. Имея великолепный радиус действия, низкую радарную видимость и сверхзвуковую крейсерскую скорость RFB-22 могут атаковать узлы противовоздушной обороны, авиабазы и стратегические цели с применением E-бомб, достигая значимого шокового эффекта.

Наиболее эффективная оборона против электромагнитных бомб заключается в том, чтобы, как и в случае с ядерным оружием, воспрепятствовать их доставке путем уничтожения платформ для запуска или средств доставки. Это, однако, не всегда возможно и поэтому системы, которые могут подвергнуться действию электромагнитного оружия, должны быть электромагнитно упрочнены.

Наиболее эффективный метод заключается в том, чтобы поместить оборудование целиком в электропроводящую клетку, называемую ячейкой Фарадея, которая препятствует проникновению электромагнитного поля от источника к защищаемому оборудованию. Однако, большая часть такого оборудования должно иметь коммуникации с внешним миром (например, с источниками питания), что влечет появление "точек входа", через которые электрические переходные процессы могут проникать в клетку и вызывать повреждение. И хотя для передачи данных могут быть применены оптико-волоконные линии, кабели питания все равно остаются уязвимым местом.

В месте входа электропроводящего канала должны быть установлены сетевые фильтры (electromagnetic arresting devices). Существует целый набор таких устройств, однако следует быть внимательным при их выборе, чтобы быть уверенным, что они смогут работать с перенапряжениями, создаваемыми электромагнитным оружием.
Существенно, что усиление систем должно быть проведено на системном уровне, так как электромагнитное повреждение любого единичного элемента сложной системы могло бы подавить функциональность всей системы. Усиление вновь создаваемой аппаратуры и систем существенно увеличит их стоимость. Усилить старую аппаратуру и системы может оказаться вообще невозможным, так что может потребоваться полная их замена. Проще говоря, усилить оборудование на стадии его разработки значительно легче, чем пытаться усилить уже существующую аппаратуру.

Интересный аспект электрического повреждения заключается в возможности "ранения" полупроводниковых приборов, оборудование при этом испытывает "мерцающие" неисправности, а не полный выход из строя. Такие неисправности связывают значительное количество ресурсов, предназначенных для технического обслуживания и, кроме того, ограничивают уверенность операторов в надежности аппаратуры. Мерцающие неисправности невозможно отремонтировать за разумные деньги, что вызывает необходимость постоянного выведения оборудования из эксплуатации со значительными потерями эксплуатационного времени на диагностику повреждений. Этот фактор также должен приниматься во внимание, когда оценивается упрочнение аппаратуры против электромагнитной атаки, так как частичное или неполное упрочнение в этой связи может вызвать дополнительные трудности. Действительно, при неполном экранировании может возникнуть резонанс при возбуждении излучением, что только добавит повреждения оборудованию, содержащемуся в "клетке" .

Аппаратура, помещенная в клетку Фарадея, помимо того, что она этим самым упрочнена против электромагнитной атаки, не будет и излучать значительные мощности. Если используется радиочастотное связное оборудование, должны использоваться методики уменьшения вероятности перехвата, для того, чтобы предотвратить использование уходящего излучения для целей наведения.

Коммуникационные сети должны применять топологию с достаточной избыточностью и механизмами ликвидации сбоев, для того, чтобы была возможна работа при выходе из строя большого количества узлов и линий связи. Это не позволит пользователю электромагнитных бомб вывести из строя большую часть сети или даже сеть в целом путем уничтожения ключевых узлов или линий связи одной атакой или небольшим количеством атак.

Ограничения электромагнитного оружия определяются конкретным исполнением и средствами доставки. Тип исполнения оружия определяет силу электромагнитного поля на данном радиусе от места инициации и его спектральное распределение. Средства доставки будут ограничивать точность, с какой оружие может быть доставлено к намеченной цели.

Следует заметить, что ламповое оборудование значительно более устойчиво к воздействию электромагнитного оружия, чем оборудование на транзисторах и микросхемах. Поэтому оружие, оптимизированное для уничтожения "твердотельных" компьютеров и приемников, может вызвать только небольшое повреждение, или даже не оказать никакого воздействия на ламповое оборудование, для примера на советское военное оборудование начало 60-х. Поэтому такое оборудование может быть выведено из строя только при применении соответствующего оружия.

Другое ограничение электромагнитного оружия заключается в том, что трудно оценить, выведена аппаратура из строя или нет. Радары или связное оборудование могут продолжать излучать после атаки, даже если их приемники и системы обработки данных выведены из строя. Это означает, что оборудование, которое было успешно атаковано, может вновь оказаться работающим. С другой стороны, противник может выключить излучатель при угрозе атаки и отсутствие излучения уже не будет свидетельствовать об успехе атаки.

Оценка того, является ли атака против неизлучающей цели успешной или нет, весьма проблематична. Хорошим делом была бы разработка инструментария специально для целей анализа побочных излучений, не только для целенаведения, но для оценки степени поражения.

Важный фактор в оценке летального покрытия электромагнитного оружия - распространение в атмосфере. Хотя соотношение между силой электромагнитного поля и расстоянием для свободного пространства определяется законом обратных квадратов, ослабление поражающего действия с увеличением расстояния в условиях атмосферы будет также обусловлено эффектами поглощения атмосферных газов. Это, в частности, существенно на частотах выше 20 ГГц, где существуют значительные пики поглощения водяного пара и кислорода. Это будет ограничивать действие электромагнитного оружия микроволнового диапазона более коротким радиусом, чем в идеале достигалось бы для К и L частотных диапазонов.

Средства доставки будут ограничивать поражающее действие электромагнитных бомб введением ограничений на размеры оружия и точность его доставки. Если ошибка доставки будет порядка летального радиуса при данной высоте подрыва, поражающее действие будет значительно ограничено. Это особенно важно, когда оценивается поражающее действие неуправляемых электромагнитных бомб, так как ошибки доставки будут существенно больше, чем в случае применения управляемого оружия, такого как GPS-управляемые бомбы.

Поэтому точность доставки и достижимый радиус поражения должен рассматриваться с учетом приемлемого непрямого повреждения для выбранной цели. Когда рассматривается непрямое электрическое повреждение, точность доставки и радиус поражения являются ключевыми параметрами. Неточно доставленное оружие с большим радиусом поражения может оказаться бесполезным против цели, для которой, за пределами некоторого определенного радиуса, можно говорить только о непрямом поражении.

Относительная простота FC-генераторов и виркаторов предполагает, что любая страна, даже если она имеет технологическую базу на уровне 40-х годов, в состоянии произвести это оружие, если добудет конструкторскую документацию на него.

Как пример, изготовление FC-генераторов может быть выполнено с базовыми электрическими материалами, с обычной пластической взрывчаткой, такой как С-4 или Semtex и легко доступным станочным оборудованием, таким как токарные станки и соответствующие оправки для формирования катушек. Без учета накладных расходов, двухступенчатый FC-генератор мог бы быть изготовлен за $1000-2000, при западных ставках заработной платы. Для стран третьего мира и развивающихся стран эта стоимость может быть даже ниже.

В то время как относительная простота и, таким образом, низкая стоимость такого оружия может рассматриваться как благо для развитых стран, намеревающихся создать жизнеспособные военные запасы или сохранить производство в военное время, возможность менее развитых стран массово производить такое оружие вызывает обоснованную тревогу. Зависимость современных экономик от инфраструктуры информационных технологий делает их крайне уязвимыми к атакам такого оружия.

Основное беспокойство вызывает уязвимость, проистекающая из увеличивающегося использования коммуникационных схем, основанных на медных кабелях. Если медную среду массово заменить на оптическое волокно для достижения более высокой пропускной способности, коммуникационная инфраструктура станет в результате значительно более устойчивой к электромагнитным атакам. Однако, современная тенденция заключается в использовании существующей кабельной инфраструктуры (телевизионной и телефонной) для обеспечения многократного увеличения битрейта (кабельные модемы, ADSL/HDSL/VDSL). Более того, постепенная замена коаксиальных Ethernet сетей на оборудование на скрученных парах и далее будет увеличивать уязвимость кабельных систем внутри зданий. Не будет чрезмерным предположить, что коммуникационный сервис на Западе останется в обозримом будущем "мягкой" электромагнитной целью.

В настоящее время не существует мер, препятствующих распространению электронного оружия. Даже если будут согласованы договоренности по ограничению распространения электромагнитного оружия, они окажутся фактически неспособными перебороть существующую доступность соответствующих материалов и оборудования.
loading загрузка
ОТКАЗ ОТ ОТВЕТСТВЕННОСТИ: BakuPages.com (Baku.ru) не несет ответственности за содержимое этой страницы. Все товарные знаки и торговые марки, упомянутые на этой странице, а также названия продуктов и предприятий, сайтов, изданий и газет, являются собственностью их владельцев.

Журналы
Куплю остров
© Portu